Matrix variate logistic regression model with application to EEG data
نویسندگان
چکیده
منابع مشابه
Matrix variate logistic regression model with application to EEG data.
Logistic regression has been widely applied in the field of biomedical research for a long time. In some applications, the covariates of interest have a natural structure, such as that of a matrix, at the time of collection. The rows and columns of the covariate matrix then have certain physical meanings, and they must contain useful information regarding the response. If we simply stack the co...
متن کاملMatrix-Variate Beta Generator - Developments and Application
Matrix-variate beta distributions are applied in different fields of hypothesis testing, multivariate correlation analysis, zero regression, canonical correlation analysis and etc. A methodology is proposed to generate matrix-variate beta generator distributions by combining the matrix-variate beta kernel with an unknown function of the trace operator. Several statistical characteristics, exten...
متن کاملMultilevel cumulative logistic regression model with random effects: Application to British social attitudes panel survey data
Amultilevelmodel for ordinal data in generalized linearmixedmodels (GLMM) framework is developed to account for the inherent dependencies among observationswithin clusters. Motivated by a data set from the British Social Attitudes Panel Survey (BSAPS), the random district effects and respondent effects are incorporated into the linear predictor to accommodate the nested clusterings. The fixed (...
متن کاملApplication of Bayesian Logistic Regression to Mining Biomedical Data
Mining high dimensional biomedical data with existing classifiers is challenging and the predictions are often inaccurate. We investigated the use of Bayesian Logistic Regression (B-LR) for mining such data to predict and classify various disease conditions. The analysis was done on twelve biomedical datasets with binary class variables and the performance of B-LR was compared to those from oth...
متن کاملLogistic Regression for Single Trial EEG Classification
We propose a novel framework for the classification of single trial ElectroEncephaloGraphy (EEG), based on regularized logistic regression. Framed in this robust statistical framework no prior feature extraction or outlier removal is required. We present two variations of parameterizing the regression function: (a) with a full rank symmetric matrix coefficient and (b) as a difference of two ran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biostatistics
سال: 2012
ISSN: 1465-4644,1468-4357
DOI: 10.1093/biostatistics/kxs023